Resolving Disconnected Patient Records to Support Patient Care and Population Health

Jacob Krive2,3,4, Annamarie Hendrickx*1 and Terri Godar1
1Advocate Health Care, Rolling Meadows, IL, USA; 2Valence Health, Chicago, IL, USA; 3University of Illinois at Chicago, Chicago, IL, USA; 4Nova Southeastern University, Fort Lauderdale, FL, USA

Introduction
Population health relies on tracking patients through a continuum of care with data from disparate sources. An assumption is made that all records of a patient from all the sources are connected1. As was realized during the process of operationalizing algorithms for population health, not all patient records are connected2. Disconnected records negatively impact results: from individual patient care management through population health’s predictive analytics3,4. An enterprise master patient index (EMPI) system can be employed to connect a patient’s records across disparate systems5, but it requires comprehensive tuning to maximize the number of connected records. This presentation describes how one large healthcare integrated delivery network tuned their EMPI system to maximize the number of connected patient records across all sources.

Methods
Several methods were employed to reduce the number of disconnected records. The 5 sources containing the most disconnected records were chosen from the 32 sources of data in the system that represented 10.5 million records. Retention rules were developed for removing records from the EMPI database that did not meet the criteria for retention and those records were removed. Using sampled data, the weighting factors applied to the data elements used to determine a score to allow the EMPI system to link records together (autolink), and the score at which an autolink occurs were reconfigured to allow the EMPI system to link more records. The matching algorithm was enhanced for combining the patient records into a single entity for sources that were sending a high rate of duplicate patient records with differing patient IDs and identical demographics. A cross-matching function was executed to force the re-evaluation of all the linkages between all the records within the EMPI database. The Data Stewardship Team used the Delphi method to determine false positive and false negative rates.

Results
The number of disconnected records was reduced by 99.8% (Tables 1, 2, 3).

Conclusions
An IDN can employ several tactics to address unmatched patient records across multiple sources without manually reviewing all patient records for possible matches. This project represented the first pass of data standardization and reconciliation. During project execution, additional data quality issues were discovered. This led to a number of follow-on interventions, such as the development of a new source on-boarding policy, development of a go-live data validation checklist, inclusion of third party software to validate addresses, and developing guidelines for reducing data errors and the number of duplicate patient records sent to the EMPI system at patient intake.

Keywords
Enterprise Master Patient Index; Patient Data Linkage; Data Governance

References

*Annamarie Hendrickx
E-mail: annamarie.hendrickx@advocatehealth.com