Concept Type Prediction and Responsive Adaptation in a Dialogue System


  • Svetlana Stoyanchev Columbia University, Computer Science Department
  • Amanda J. Stent AT&T Labs – Research



Responsive adaptation in spoken dialog systems involves a change in dialog system behavior in response to a user or a dialog situation. In this paper we address responsive adaptation in the automatic speech recognition (ASR) module of a spoken dialog system. We hypothesize that information about the content of a user utterance may help improve speech recognition for the utterance. We use a two-step process to test this hypothesis: first, we automatically predict the task-relevant concept types likely to be present in a user utterance using features from the dialog context and from the output of first-pass ASR of the utterance; and then, we adapt the ASR's language model to the predicted content of the user's utterance and run a second pass of ASR. We show that: (1) it is possible to achieve high accuracy in determining presence or absence of particular concept types in a post-confirmation utterance; and (2) 2-pass speech recognition with concept type classification and language model adaptation can lead to improved speech recognition performance for post-confirmation utterances.