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Abstract

Two-dimensional (2D) videoconferencing has been explored widely in the past 15-20 years to
support collaboration in healthcare. Two issues that arise in most evaluations of 2D
videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor
depth perception. To address these problems, we are exploring the use of a small array of
cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of
events taking place within. The 3D views could be sent across wired or wireless networks to
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remote healthcare professionals equipped with fixed displays or with mobile devices such as
personal digital assistants (PDAs). The remote professionals’ viewpoints could be specified
manually or automatically (continuously) via user head or PDA tracking, giving the remote
viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of
the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article
we motivate and explain the vision for 3D medical collaboration technology; we describe the
relevant computer vision, computer graphics, display, and networking research; we present a
proof-of-concept prototype system; and we present evaluation results supporting the general
hypothesis that 3D remote medical collaboration technology could offer benefits over
conventional 2D videoconferencing in emergency healthcare.
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INTRODUCTION

In [41] we presented some early methods and results for a multi-year interdisciplinary research
project to develop and evaluate technology for 3D telepresence, designed to support medical
collaboration across geographic distances. We refer to this concept as three-dimensional
medical collaboration (3DMC) technology. Here we report collectively on more final results of
the project, including advances in the fundamental technologies, the construction of a
functioning proof-of-concept 3DMC prototype, and some preliminary results from a multi-year
human subject evaluation.

Our long-term 3DMC vision is to enhance and expand diagnosis and treatment capabilities in
life-critical trauma situations. We aim to connect two entities: (1) a medical advisee and
patient, such as a paramedic treating a trauma victim in the field, with (2) a healthcare
specialist acting as medical advisor, for example an emergency room physician at a large
medical center. Our goal is to provide a high-fidelity visual and aural sense of presence, such
that advisee and advisor can more effectively communicate and share information when
diagnosing and treating a patient (see Fig. 1). Primarily, but not exclusively, we envision this
technology enabling better patient care through extemporaneous medical collaboration across
geographic distances in dynamic situations where patient diagnosis and treatment are time-
critical and complex, but where physical co-presence of medical experts and patients is not
possible.

The basic technical idea for 3DMC is to use a relatively small number of cameras to “extract”
(estimate) a time-varying three-dimensional (3D) computer model of the advisee’s remote
environment and of the events taking place within. When coupled with head (or hand-held
viewer) position and orientation tracking, this should offer the advising physician a continuum
of user-controlled dynamic views of the remote scene, with both direct and indirect depth cues
through binocular stereoscopy and (in the case of head tracking) head-motion parallax. Fig. 1
illustrates a number of example scenarios. We hope that in the future such view-dependent 3D
telepresence could be a standard part of mobile emergency patient care systems (e.g., [1]) that
today use radio, cell phone or state-of-the-art 2D videoconferencing technology.
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Fig. 1. Future vision of 3D telepresence technology for medical collaboration. The left column

illustrates examples of person-portable and permanent 3D telepresence technologies used by
an advisee. The top row illustrates examples of head-tracked and hand-held technologies used
by an advisor. Images (a)-(d) illustrate the shared sense of presence for corresponding advisor-
advisee scenarios.
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We hypothesize that the shared sense of presence offered by view-dependent 3D telepresence
will be superior to current 2D videoconferencing, improving collaboration between
geographically-separated medical personnel, enabling new opportunities to share medical
expertise throughout, between, and even beyond medical facilities. To investigate this
hypothesis, our research addresses two fundamental questions: can we develop the technology
for 3D telepresence in medicine, and will the technology be useful to the medical community?
Consequently, our research consists of three inter-related components: 3D technology
research, prototype development, and evaluation.

Our project explores the key technological and social barriers to 3DMC today. Technological
barriers include real-time acquisition and generation of user-specified views, tracking at the
advisor’s site, displays that deliver accurate 3D depth cues and motion parallax, and network
congestion and variability issues. We built a prototype system that permits investigation of
these technological barriers.

Social barriers include understanding the potential utility of 3DMC in healthcare and obstacles
to its adoption. If the proposed technology will not improve emergency healthcare, or if it will
not be adopted and used within the medical community, there is little purpose to continue the
technical research. We therefore conducted a posttest, a controlled between-subjects
experiment simulating an emergency healthcare situation to examine the potential utility of
3DMC compared to 2D videoconferencing and paramedics working alone. To examine 3DMC’s
adoption potential, we conducted interviews with a variety of stakeholders in the medical
community, aiming to identify challenges faced by and opportunities resulting from 3DMC
adoption and use.

Three different disciplines, computer science, information science and medicine, have been
vital to exploring technological and social barriers to 3DMC. Computer scientists have provided
visualization and telecommunications technology expertise; information scientists have
provided socio-technical evaluation and social informatics expertise; and physicians have
provided medical and emergency healthcare expertise. Without each of these disciplines, the
project would not have been possible. This is often the case in use-inspired research [2] that
examines issues arising in basic research and practice, and strives to contribute to basic
research and practice as our project does. This paper synthesizes the disciplinary work done in
the project, presenting all project components in a holistic manner for the first time.

PREVIOUS RESEARCH

Medical Collaboration via Videoconferencing Technology

Medical collaboration, specifically collaboration between different types of healthcare
providers and patients, using two-dimensional (2D) videoconferencing and televideo
technology, has been explored in a variety of medical settings, such home-based healthcare [3,
4], prison-based healthcare [5, 6] and rural healthcare [7, 8]. Two limitations with respect to
the technology are repeatedly emphasized in the literature: the difficulty associated with
obtaining the desired camera views, and limitations in depth perception.
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For example, camera view difficulties are mentioned multiple times in the final report for the
U.S. National Library of Medicine’s National Laboratory for the Study of Rural Telemedicine [7].
One example is in the discussion of the use of a 2D televideo system to observe children with
swallowing disorders. The report states: “Limitations of telemedicine services for management
of feeding and growth issues include the need to rely on the interpretations of others during
physical exam. At times the camera angles were not ideal to allow for clear pictures of the
mouth during feeding” [7, p. 110].

The problem was also identified by Ellis and colleagues [6] where they describe work using a
computer-based telemedicine system for semi- and non-urgent complaints at a short-term
correctional facility. “The lack of remote control on the patient care camera at the remote site
by the examining emergency medical physicians requires the nurse to spend considerable time
operating the camera and responding to technical instructions...it was another important
reason for nonuse” [6, p. 92].

Patients have also found this same limitation in 2D video technology. Georgetown University
Medical Center [9] reports that in contrast to a face-to-face visit, the use of 2D video
technology limits the physician’s view of the patient, and as a result patients felt that the
physician could not always “see” how the patient was “really doing.”

One could try and address the visibility problem using multiple cameras. But switching between
numerous disjoint views, as a security guard might with a surveillance system, is generally not
intuitive; nor is it usually feasible in time-critical healthcare situations. With a very large
number of cameras and tracking of the user’s head motion, one could imagine automatic
switching based on view position and orientation. But the quantity and configuration of
cameras necessary to achieve near-seamless and appropriate switching over an operating
room, as well as the associated 2D video storage and bandwidth needs, would be impractical.
While pan-tilt-zoom cameras can help address this problem, they require additional technical
skills, impose an additional cognitive load onto the advisor, and require additional time to
adjust (which is difficult in a trauma situation).

In addition to the challenges in obtaining the desired 2D view of a remote patient, Tachakra
states “impaired depth perception is a significant problem in telemedicine.” and notes that “the
most important cue of depth is due to binocular disparity”® [10, p.77]. Similarly, a university
“Clinical Studio” which used video conferencing to perform neurological examinations
reported: “[Video-conferencing] technology is not difficult and can be [handled]... by
[Emergency Room]... staff. However the images are in two dimensions hence certain aspects of
the exam could be enhanced by more than one camera angle.”[7, p. 187]

In situations where depth perception would aid in the collaboration, advisee medical personnel
today must resort to secondary visual cues or to verbal clarification from a remote advisor.

! Binocular disparity is the difference between a matching pair of image feature locations as seen by the left and right eyes. The differences are
one of the cues that the brain uses to estimate the distance to the feature, i.e. the distance to and shape of objects.
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Both impose additional cognitive loads compared to the very natural views afforded if the
advising physician were able to “be there” with the patient. Tachakra describes several “coping
strategies” that could be used to overcome the inherent limitation of the 2D imagery. Chief
among the coping strategies is the practice of “rotating the camera in the transverse plane
about 30° at a time” [10, p. 83]. Tachakra surmises that this controlled camera rotation
“enables the consultant to build a three-dimensional mental image of the object by briefly
storing a range of two-dimensional views” [10, p. 83]. This is not surprising given that object
occlusion and motion parallax? are two of the most powerful depth cues.

However, it is often not realistic to require camera rotation as prescribed by Tachakra in
emergency, time-critical healthcare situations in the field. For example, the time needed to
rotate a camera and view the rotation reduces the amount of time available to perform life-
saving procedures. It reduces the number of on-site personnel who can provide assistance to a
trauma victim, as it requires the full-time effort of a trained on-site person. Moreover, in some
situations it may be physically very difficult to rotate a camera, e.g., when a victim of a car
accident is lying on an incline along the side of a road. To address these limitations, we are
developing 3D telepresence technology that inherently provides depth perception and dynamic
views.

Sense of Presence and Task Performance via 3D Technology

Previous research shows that in general, 3D technology enables an increased sense of
presence, i.e. subjective perception of being present or immersed within a synthetic, usually
computer-generated environment, often referred to as “Virtual World” or “Virtual
Environment” (VE). For example, Hendrix and Barfield [11] report on three studies where they
vary display parameters and attempt to assess a user’s sense of presence. The results from the
first and second study indicate that the reported level of presence is significantly higher when
head tracking and stereoscopy cues are provided. The third study indicates that the level of
presence within the VE increases with the visual field of view.

There is also evidence to suggest that view-dependent or immersive 3D displays increase users’
task performance. For example, in a study of how various system parameters affect the illusion
of presence in a VE, Snow [12] reports a moderately positive relationship between perceived
presence and task performance. Pausch and colleagues [13] found that users performing a
generic pattern search task perform roughly twice as fast when they change from a stationary
2D display to a head-mounted (and tracked) 3D display with identical properties. Schroeder and
colleagues [14] present the results of a study in which distant collaborators attempted to solve
a Rubik’s cube type puzzle together. The authors compare face-to-face task performance with
networked performance using both an immersive 3D display and a conventional 2D desktop
display. They report that task performance using the networked immersive 3D display and in
the face-to-face scenario were very similar, whereas desktop performance was “much poorer.”
Most recently, Mizell and colleagues [15] describe a 46-person user study aimed at determining
whether immersive 3D virtual reality demonstrates a measurable advantage over more

2 Motion parallax is the apparent dynamic visual displacement of an object as one translates their head or the object.
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conventional 2D display methods when viewing and interpreting complex 3D geometry. The
authors report that the head-tracked 3D system shows a statistically significant advantage over
a joystick-controlled 2D display.

Thus previous research suggests that a 3DMC system may potentially improve information
sharing and task performance in emergency medical situations, possibly leading to improve
patient care. Yet there are significant technical challenges that must be overcome in order to
create a 3DMC system.

3DMC Technical Challenges

To create a 3DMC system, we must reconstruct a dynamic remote 3D scene in real time. The
most common approach to 3D scene reconstruction is to use multiple cameras and effectively
“triangulate” points in the observed scene. This involves automatically picking some visual
feature in one camera’s 2D image, finding the same feature in a second camera, and then
mathematically extending lines from those cameras into the scene. The place where the lines
intersect corresponds to the 3D location of the feature in the room. If one can do this reliably
for a sufficient number of points in the scene, many times per second, then with some
assumptions about the scene, and with a lot of compute power, one can turn the dynamic
collection of disjoint 3D points into a coherent dynamic (that is, time-varying) 3D computer
model that one can use like a flight simulator.

However, there are at least three areas of fundamental difficulty associated with trying to
reconstruct dynamic 3D models of real scenes: feature visibility, feature quality, and
reconstruction algorithms. Features might not exist or might be confusing or ambiguous. They
are often hard to detect, isolate, resolve, and correlate, and automating the overall
reconstruction process in light of these difficulties is a very hard problem. The state of the art is
limited to static environments for large spaces, or dynamic events in relatively small, well-
controlled environments.

To address these challenges, our multi-year project sponsored by the U.S. National Institutes of
Health’s National Library of Medicine (Craig Locatis and Michael Ackerman) included research
in real-time computer vision, computer graphics, and network adaptation strategies, as well as
a formal evaluation of the likely effectiveness and acceptance of 3D medical collaboration
technology. We have constructed a proof-of-concept prototype system and conducted a
between-subject posttest experiment to evaluate the technology’s potential. Development of a
production-quality system was beyond the scope of the project.

Methods

Three fundamental areas of technology research are required to create a 3DMC system. These
are: computer vision methods for reconstruction of a 3D model and/or a user-selectable view
of a dynamic scene; remote collaboration display paradigms; and network resource
management to support transmission of the 3D view to the remote consultant.
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A. 3D Reconstruction
The 3D reconstruction process involves two major steps: the reconstruction of 3D points from
2D images and the reconstruction of 3D surfaces from the 3D points. To reconstruct 3D points
from 2D images we use a novel approach called View-dependent Pixel Coloring (VDPC) [16].
VDPC is a hybrid image-based and geometric approach that estimates the most likely color for
every pixel of an image that would be seen from some desired viewpoint, while simultaneously
estimating a 3D model of the scene. By taking into account object occlusions, surface geometry
and materials and lighting effects, VDPC can produce results where other methods fail: for
example, in areas without discernible detail that can be used to derive visual features (texture-
less); or in the presence of specular highlights. Both conditions are common in medical scenes.
We use commercial graphics hardware (PC video cards) to perform the 3D reconstruction very
quickly as the video images arrive from the cameras into our computer system. The basic idea is
to use the graphics hardware to rapidly project the camera images onto a series of planes
swept through geometric space, searching in parallel for the best color matches (least variance
between the cameras) at a dense set of points on the planes. The result is a relatively dense
point cloud that we can then render in real time, again using the graphics hardware. Additional
details about this algorithm can be found in [16, 17].

B. Remote Collaboration 3D Displays
It is reasonable to expect that in the future medical advisors on duty in a hospital could have
access to facilities for stereoscopic, head-tracked viewing of dynamic 3D reconstructions of the
remote patient and advisee (as illustrated in Fig. 1a, 1c.). We are working towards this vision.
We currently use a simple prototype head-tracked display; it uses a high-resolution monitor
and an Origin Instruments opto-electronic system that tracks the viewer’s head position and
orientation. The viewer wears a headband with three infrared LEDs that are tracked in real time
by a small sensor unit. From this we compute the location of the viewer’s dominant eye and
render the reconstructed imagery from that point of view. Thus the viewer can observe the
reconstructed scene with natural/intuitive monoscopic head-motion parallax. We are also
experimenting with time-multiplexed (shuttered) stereoscopic displays, and with autostereo
displays that support multiple simultaneous viewers without glasses.

We want to provide the best possible 3D experience in mobile situations, when the medical
advisor is away from the hospital (Fig. 1b & 1d.) For a remote display we are using a personal
digital assistant (PDA) because most medical personnel are already accustomed to carrying this
type of device. Our goal is to develop or adapt tracking technology and user interface
paradigms that will allow a remote medical advisor to use a PDA as a “magic lens” (a paradigm
suggested by [18, 19, 20, 21]), providing a view of the remote patient, with natural interactive
viewpoint control to help address occlusions and to provide some sense of depth.

We are currently investigating a two-handed patient-lens paradigm as shown in Fig. 2. Hinckley
et al. introduced the idea, using a doll’s head or rubber ball and various tools as ‘props’ for
neurosurgeons visualizing patient data [22]. The authors found that users could easily position
their hands relative to one another quickly—a task we all do frequently. For 3D medical
collaboration, the advisor would have a physical prop that serves as a surrogate for the patient,
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and a PDA that is tracked relative to the prop. In our prototype, a specially designed PDA cover
serves as the prop. The advisor holds the prop (PDA cover) in one hand and the PDA in the
other, moving them around with respect to each other as needed to obtain the desired view.
This provides the advisor with an instant visual target to aim their “magic lens” at, and also
affords new ways of inspecting the remote scene. For example, an advisor can rotate the prop
to quickly get a different view, rather than spending time and energy walking around to the
other side. As a bonus, tracking a PDA relative to another object is a much more tractable
problem than tracking a PDA relative to the world.

! - -
Fig. 2. Handheld prototype. The prototype uses a PointGrey DragonFly [23] camera mounted on
the PDA (in the left hand). The prop (in the right hand) has a printed image of our training torso
on it, along with a grayscale pattern. We use ARToolkit [24] to track the surrogate with respect
to the PDA (remote.)

We have developed three main software components: a Tracking Server; a PDA Server (that
also acts as a client to the Tracking Server); and a PDA Client. The Tracking server receives
images from the PDA camera, and uses ARToolKit [24] to track the surrogate (PDA cover) with
respect to the PDA. The PDA Server, continually receives a complete representation of the
reconstructed patient data from the compute/rendering cluster via a dedicated Ethernet
connection as described earlier. The PDA Server also obtains the estimated position and
orientation of the PDA from the Tracking Server using the Virtual-Reality Peripheral Network
(VRPN) device protocol [25]. It then renders a view of the most recent reconstruction from the
estimated PDA position and orientation, and compresses that image such that it can be sent to
the PDA. The PDA Client (running on the PDA) receives these compressed images and displays
them; it also relays user input back to the PDA Server, such as thumbwheel-controlled field-of-
view settings. Each of these components may be run on the same or on separate machines. For
additional technical details, see [26].

C. Network Resource Management
In our target 3DMC scenarios the network path represents a significant bottleneck. We must
carefully manage this resource in order to ensure that at all times we transmit the data that are
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most useful to the overall application and to the goals of the user. In particular, 3DMC has the
potential to generate many media streams (camera imagery, tracking data, synthesized views,
user interaction and commands, audio, to name just a few) with complex semantic
relationships between them. With respect to camera imagery, the utility of the information
from one image source may depend on the quality and utility of information from some other
source. For example, given two video cameras that share a significant overlap of field of view, it
may be preferable to allocate available bandwidth to capture and transmit a high-quality image
for only one of the two streams while allowing the quality of the other stream to degrade.
Alternatively, it may be better to allocate bandwidth equally in order to achieve similar quality
for both streams—useful for VDPC or for other stereo correlation and high-quality 3D
reconstruction techniques. Thus the challenge we face is twofold. First, how can we compactly
and intuitively specify an adaptation policy to support specific user-level goals? Second, how
can we efficiently evaluate that policy?

We need a framework for addressing the problems of adaptation that is more flexible than
previous approaches, which often rely on statically defined priorities (e.g., prioritize audio over
video) or simple rule-based decisions (e.g., when available bandwidth is X, do Y). In the
framework we are developing, all possible tradeoffs available to the application are mapped as
nodes in an N-dimensional “utility space”. Each dimension represents a particular axis for
adaptation. Edges between nodes represent both encoding dependencies as well as encoding
costs. The nodes and edges form a graph embedded within the utility space. The current
information needs of the system are modeled as a “point of interest” within this space. The
location of this point of interest changes to reflect how the user is interacting with the system
and the dynamics of the application. The utility of any given tradeoff is inversely proportional to
the distance between the node that represents the tradeoff and the point of interest.
Adaptation is now simply the process by which we select the most useful tradeoff available as
defined by the ratio of utility to cost.

The framework is extensible in that new data sources can be modeled within the utility space
by simply adding nodes to the graph at the appropriate locations. Similarly, adding new
dimensions of adaptation is simply a matter of extending the utility space with another axis and
extending the locations of nodes to reflect their position relative to the new dimension. Real-
time evaluation is feasible since the adaptation is now a simple mechanical process of
maintaining the set of possible tradeoffs in the graph and their distance to the point of interest.
Representational dependencies are explicitly modeled by the edges of the graph and constrain
our adaptation decisions to those that are feasible given how the data are encoded. Additional
technical details can be found in [27].

While the use of a utility space provides us with a mechanical means of driving adaptation and
allows parsimonious specification of adaptation policy, the construction of a utility space for a
specific application is more art than science. Choices must be made about which adaptation
dimensions are going to be modeled, about how these dimensions are scaled relative to each
other, about the specific distance function that will be used to establish utility, and about how
the actions of the user are reflected by the point of interest.
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For 3DMC, we have identified five dimensions for adaptation: one each for time, resolution,
relative change of visual content, and two that capture the notion of region of interest. We are
initially limiting ourselves to the problem of adaptation among the different video sources in a
3DMC system capturing the scene. Our current model for each camera assumes that each
camera is able to produce low-, medium-, or high-resolution imagery, and that each camera’s
view is associated with a 2D field of view within the scene. We are experimenting with simple
Euclidean distance functions and greedy allocation algorithms in which the node yielding the
maximum utility for the minimum cost is selected until resources are exhausted. The process is
iterative and the graph evolves as time passes and new frames are produced. Preliminary
experiments show that the system is able to make complex, non-trivial adaptation decisions in
an emulated eight-camera setup. Much of the remaining challenge is to develop and evaluate
specific utility functions that correspond to the actual perceived quality of real users.

3DMC Evaluation

As indicated in the National Academy’s report on telemedicine evaluation [30], it is of critical
importance to examine the acceptability and practicality of technology in medicine. Thus we
are investigating the potential of 3DMC to improve emergency healthcare and the barriers to
its adoption at the present time, early in its lifecycle and before billions of dollars are invested
in its implementation.

A. Evaluating the potential impact of 3DMC on emergency healthcare
Evaluating the potential of 3DMC technology has unique challenges, some of which can be
attributed to the complex context in which emergency situations occur. Patient healthcare
priorities, patient privacy, outdoor conditions, and the dynamics of emergency care in the field
make it impossible to collect evaluation data in the field. Hence we conducted a controlled
experiment evaluation using a posttest between-subjects design.

The controlled experiment evaluation compared emergency medical care between three
conditions: a paramedic working alone diagnosing and treating a trauma victim; a paramedic
and emergency room physician diagnosing and treating a trauma victim collaboratively using
state-of-the-art 2D video-conferencing; and a paramedic and emergency room physician
diagnosing and treating a trauma victim collaboratively using a 3D proxy. We compared medical
outcomes and paramedics’ perceptions between these three conditions.

In each condition, the trauma victim suffered from a difficult airway and a cricothyrotomy was
required to save the victim. In a surgical cricothyrotomy an incision is made in the neck,
through the skin and the underlying cricothyroid membrane, to allow air to pass to the lungs
[31]. Paramedics are trained to manage a difficult airway and perform a surgical
cricothyrotomy, yet it is extremely challenging for many paramedics. Even those physicians
most experienced in airway management recognize the sense of urgency and anxiety
associated with control of the difficult airway, given that trauma victims without an adequate
airway will die within minutes if they do not receive appropriate treatment [32]. The inability to
secure an airway is the most common cause of preventable death in pre-hospital care [33]. The
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trauma victim was a METI (http://meti.com/) human patient simulator, or mannequin. This
state-of-the-art mannequin can be programmed to act and respond in a life-like manner. For
example, its pupils dilate in response to light, its chest rises and falls when breathing, and its
heart rate, breathing pattern and blood oxygen levels respond to drug injections and medical
procedures. We programmed the mannequin to show all symptoms of the worst-case difficult
airway, and we dressed and positioned the mannequin to portray a car accident scenario as
realistically as possible as shown in Fig. 3.

=

Fig. 3. The human patient simulator staged as a car accident victim.

The 2D videoconferencing technology used in the experiment was designed in collaboration
with emergency room physicians to provide optimal views of the emergency healthcare
scenario. Three views of the patient were provided to the collaborating physician using digital
cameras directly connected to three 20-inch high-resolution monitors. One camera was a
remote-controlled pan-tilt-zoom camera that the advising physician could control. The
physicians also had a full-screen view of the patient monitor showing the patient’s heart rate,
blood pressure and blood oxygen saturation rates in real time. The physician observed the
patient monitor and camera views in a custom-built workstation. In addition, the paramedic
had a 2D video view of the consulting physician.

Because our (indeed all) current 3D reconstruction techniques are relatively limited compared
to their expected future potential, we decided to use a 3D proxy condition to assess the 3D
paradigm independent of today’s technology—i.e. how effective the 3D reconstruction could
be in the future. In the 3D proxy condition, an emergency room physician was physically co-
located with a paramedic and victim. The physician had freedom of movement and could point
with a laser pointer but was not permitted to touch anything or anyone. Our reasoning for
using such a proxy was that if the best possible 3D (reality!) was not medically more effective
than 2D video, there would be little reason to continue to pursue the 3D technologies for those
purposes.

A total of 60 paramedics, 20 per condition, participated in the experimental evaluation. Each
paramedic was first given an introduction to the experiment the mannequin, and the car
accident scenario. The paramedic also received a paramedic bag containing medical equipment
and available medication. Second, they were asked to approach the trauma car accident victim
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(i.e., the mannequin) and diagnose and treat him. Each paramedic was free to discuss the
diagnosis and treatment as much or as little as they wished with the advising physician. The role
of the physician was always played by one of two emergency room physicians. Together, the
advising physicians developed a common interaction approach and script, based on their
decade-long experience of successful interaction with paramedics, to use when collaborating
with the paramedics. A researcher was always in the room with the paramedic, observing the
diagnosis and treatment; each session was also videotaped.

Each session’s videotape was later analyzed to assess medical task performance. The grading
protocol used in this analysis was based on standard medical protocols, with details added by
two expert emergency room physicians. Each paramedic also completed a questionnaire and
participated in a semi-structured interview after their session. In the questionnaire, paramedics
reported their perceptions regarding the usefulness of information provided by the physician,
the interaction with the physician, and the self-efficacy or the belief in one’s capabilities to
perform a task in the future [34]. During the interviews, paramedics reflected on their
experiences during their session.

Details regarding the validity of the experiment design, data collection instruments, data
analysis and data analysis results can be found in [35, 36]. A summary of the results is provided
in section IV.

B. Identifying Barriers to the Adoption and Use of 3DMC
To identify barriers to the adoption and use of 3DMC within the American healthcare system,
we conducted interviews with a variety of actors and stakeholders, including emergency room
physicians, residents and nurses in a suburban hospital and a rural medical center, hospital
emergency department administrators (responsible for strategic and financial planning, budget,
marketing etc.), hospital IT managers and technical support experts, public healthcare (i.e.,
Medicare) administrators, clinical directors of emergency medical services in suburban and
rural areas, an operations manager in charge of county emergency medical services, and a
medical director responsible for paramedic training, education, scope of practice and
performance improvement on a state level. All of these actors could influence the adoption and
use of 3DMC, and/or their jobs could change with its adoption and use.

At the beginning of each interview, a five minute video that presented our vision for 3DMC was
shown. After this introduction, we asked study participants to share their perspective on the
benefits and disadvantages of 3DMC for patients, on emergency healthcare professionals, on
their department and/or organization, on the healthcare system, and on how the technology
might change their current way of working, whether positively and negatively. We used a semi-
structured interview protocol that contained open-ended questions, allowing great flexibility
and detail to emerge in participants’ responses. A total of 20 interviews were conducted. Three
of these interviews were group interviews including 2 or 3 participants, thus a total of 24
people were interviewed. The interviews ranged from 24 to 110 minutes in length, with an
average length of 50 minutes. Gender distribution among participants was relatively equal (11
women and 13 men). The interviews were digitally recorded and transcribed. In addition, after
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each experiment session, we asked paramedics the same questions. We analyzed both sets of
interview data to identify challenges facing 3DMC adoption and use.

Results

Our 3DMC Prototype System

Fig. 4 shows some results of our view-dependent pixel coloring (VDPC) 3D reconstruction. The
views were reconstructed online, in real time. Note that the views were reconstructed and
rendered from completely novel viewpoints. That is, none of the rendered views matched any
of the original camera views at any time.

- 70 |
Fig. 4 Novel view images reconstructed from camera images. We set a box of Girl Scout cookies
on top of the torso to provide more familiar scene geometry. Each image is from a different
point in time and from a completely novel viewpoint that does not coincide with any of the
cameras used to acquire the raw data.

Patient Site Remote Consultant

Fig. 5. Current 3DMC Prototype System, with patient site components on the left and remote
consultant components on the right: (a) camera-lighting array with eight Firewire cameras and
high-frequency area lights; (b) compute cluster; (c) a transportable consultant viewing station
with 2D and 3D (head-tracked or autostereo) displays; (d) a tracked PDA display.
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Fig. 5 shows our 3DMC prototype system, which consists of multiple components that would be
located at the patient (advisee) site and the remote advisor’s site: (a) a portable camera unit;
(b) a portable compute/rendering cluster; and (c, d) two different consultant display devices.

The portable camera unit (PCU) shown in Fig. 5a is a rolling unit holding a camera-lighting array
with eight 640x480 resolution digital (IEEE 1394a) color cameras from Point Grey Research [23].
The cameras are currently mounted in two horizontal rows of four on a portable stand that can
be positioned next to a patient. The cameras are positioned so that their visual fields overlap
the region of interest on the patient. Mounted around the cameras are multiple high-frequency
fluorescent fixtures for flicker-free illumination. The entire array is mounted on a rolling cart
with adjustable length and angle, and significant weight (underneath the base) to prevent
tipping. The PCU’s power supply includes an AC isolation transformer® (mounted on the base)
to meet the current leakage requirements of UNC Hospital’s medical engineering staff.

The compute/rendering cluster, Fig. 5b, consists of five dual-processor servers in a
transportable rack case. Four of the servers are connected to the PCU camera array via Firewire
cables. These servers function as Camera Servers, compressing the PCU camera images and
forwarding them via a dedicated gigabit Ethernet to the fifth server. Each camera server can
optionally record the video streams to disk. The fifth server then decompresses the video
streams, loading the color images into texture memory of the graphics card for view-dependent
3D reconstruction as described in Section IIl.A. Because the PCU and the compute/rendering
cluster in our prototype are connected via Firewire cables, they must generally be moved
together. In a real production system (in the future), the PCU and compute/rendering servers
could be combined into a single unit.

The advisor’s viewing station in Fig. 5¢c consists of a rolling cart with a dedicated server that is
connected to the compute/rendering cluster (4b) by a single gigabit Ethernet cable. This
Ethernet cable is the realization of the networking boundary. It is the only link between the
compute/rendering cluster (4b) and the consultant viewing station (4c). The connection could
be across the hospital or across the world. The station has a high-resolution 2D monitor, an
Origin Instruments opto-electronic head tracker, and an autostereoscopic display mounted on
an articulated arm. The advisor’s viewing station also includes an AC isolation transformer.
Our current implementation of the tracked PDA mobile display, Fig. 5d, uses a DragonFly
camera [23] mounted on a Toshiba e800 PDA. The camera is currently attached to the
rendering PC via a Firewire cable, which uses ARToolKit [24] to compute the relative position
and orientation of the PDA, as discussed in Section IIl.B.

The current prototype is not truly portable because of the wired (Firewire) link to a computer,
but we could implement the tracking on a PDA with a built in camera in the future. Wagner and
Schmalstieg have ported and optimized ARToolKit for PDAs [28, 29], and although their results
indicated that the primary bottleneck is image capture rate, new portable devices with cameras
better suited to video rate capture are now available. This would allow a wireless interface.

® An isolation transformer is a special AC power unit that contains components to prevent electrical current from flowing from one side of the
unit to the other. This isolation provides an added level of electrical safety.
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3DMC EVALUATION

A. Evaluating the potential impact of 3DMC on emergency healthcare
The results illustrate that paramedics collaborating with a physician via a 3DMC technology
proxy may provide better medical care to trauma victims than paramedics and physicians
collaborating via 2D videoconferencing or paramedics working alone. Fewer errors and harmful
interventions were performed in the 3D proxy condition. Three paramedics working alone did
not perform a cricothyrotomy, although a cricothyrotomy was required to save the trauma
victim. A total of eleven harmful interventions were performed when paramedics worked
alone, and six were performed when paramedics collaborated with a physician via 2D
videoconferencing. In comparison, only two harmful interventions were performed when the
collaboration occurred via the 3DMC proxy.

Although no statistically significant differences with respect to task performance times across
conditions emerged from the data analysis, the results from a Levene test for equality of
variance indicate that 3DMC technology may overall reduce variation for the total
cricothyrotomy performance time. Furthermore, only one (out of five) task performance times
in the 3DMC proxy condition was influenced by the number of years of professional experience.
In comparison, three and four task performance times were influenced by the length of
professional experience when paramedics worked alone or in collaboration via 2D
videoconferencing, respectively. Paramedics were assigned to conditions based on their years
of professional experience, such that there was an equal distribution of years of professional
experience across all three conditions. It appears that the 3DMC technology may reduce
differences in diagnosis and treatment caused by differences in years of professional
experience, with paramedics with fewer years of experience providing care closer to the level
or those with more years of experience. From a trauma victim’s perspective this is an important
consideration. In emergency situations patients cannot choose which paramedics will treat
them, and patients of course want the most experienced and knowledgeable paramedic to
treat them. Similarly, emergency healthcare service organizations want to provide the highest
possible level of care, however, there is continual employee turnover with more experienced
paramedics retiring and pursuing other career opportunities. The use of 3DMC technology
could help reduce the negative impact from lack of experience in providing emergency
healthcare.

The statistical results were reflected in comments made by paramedics during post-interviews.
Paramedics collaborating with a physician via the 3D proxy expressed unequivocal satisfaction
in their cricothyrotomy task performance. In comparison, paramedics working alone or
collaborating with a physician via 2D videoconferencing technology tended to express their
satisfaction hesitantly or tentatively.

The results further show that paramedics collaborating with a physician via the 3DMC proxy
reported statistically significant higher levels of self-efficacy. Perceptions regarding self-efficacy
predict and influence future task performance [34]. Furthermore, the less work experience
paramedics in the alone and 2D conditions had, the lower they rated their ability to treat
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similar patients in the future, whereas work experience had no impact at all on feelings of self-
efficacy for paramedics in the 3D proxy condition. This suggests that the 3DMC technology may
have a positive impact on future task performance, irrespective of a paramedic’s number of
years of professional experience.

Paramedics also reported that all information provided by the advising physician, except that
regarding intubation, was statistically significantly more useful when collaborating in the 3DMC
proxy condition than the information provided when collaborating via 2D videoconferencing. In
addition to rating the usefulness lower, the paramedics collaborating via 2D videoconferencing
showed statistically significantly greater variance in their responses. This variance might be
related to previous work experience, in the sense that less experienced paramedics perceived
the information from the physician to be more useful than the more experienced ones.
However, this correlation was not present in the 3DMC proxy condition. Usefulness of
information is an important aspect of emergency medical care because receiving useful
information has an impact not only on current task performance, but also on future task
performance.

The paramedics reported that their interaction with the physician was less constrained and
better overall when collaborating via the 3DMC proxy condition than when using 2D
videoconferencing. Although the interaction when collaborating via the 3DMC proxy was also
judged to be good, more accurate and easier, these differences were not statistically
significant.

During interviews, paramedics in both conditions reported an initial awkwardness to their
interaction with the physician. However, paramedics in the 2D condition mentioned many more
difficulties. As mentioned previously, we followed the advice of expert physicians when
positioning the cameras for the 2D videoconferencing. However, we observed that the
consulting physician’s view was frequently blocked, e.g., when the paramedic leaned over the
victim. This caused the physician to ask unconstructive questions such as: Do you think your
incision is big enough? Are you in the airway? No paramedic would purposely make an incision
too small or avoid the airway, and this type of questioning appears to hinder physician-
paramedic interaction and ultimately patient care. Overall, 75% of the paramedics
collaborating using 2D videoconferencing mentioned problems interacting with the physician
compared to only 25% of the paramedics collaborating using the 3DMC proxy. Future work
includes analysis of the videos from both conditions to gain further insights regarding
interaction among the paramedics and physicians.

It appears that the increased depth perception and ability to dynamically change views are
important features for 3D telepresence technology. We often saw physicians changing their
viewpoint during the experiment sessions, bending down to get a side-angle view, as well as
standing up on tiptoe and leaning over the victim. The physicians did not need to ask
paramedics to move so they could see the patient better. The paramedic was free to focus on
the medical task at hand, and did not need to worry about the physician’s view.
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We also saw several features of the 3DMC proxy frequently utilized during the 3D proxy
sessions. For example, physicians used the laser pointer to identify the location and size of the
required incision, and to point to specific items of medical equipment that the paramedic
needed to use. The paramedics paid attention to the physician’s pointing. As Clark discusses
[37], the ability to point to physical objects facilitates mutual understanding and task
completion. Similarly, the paramedic was free to focus on the medical task at hand, and did not
need to worry about the physician’s view.

However, paramedics also reflected on potential drawbacks the 3DMC technology might
introduce. For example, the technology has the potential to make paramedics’ work visible and
subsequently evaluated in new ways. Paramedics explained:

It was nice that [the physician] was there and he had your back and he was going to walk
you through it. But then again it’s kind of intimidating because you feel like you get trained
to do this right...you’re scared you might mess up, and they say, we want you trained better
than this.

It kind of makes somebody nervous being monitored by a physician, someone of such higher
training. And you’re afraid to make a mistake because this person could be the person that
ends up saying [whether] you get to do more, and whether you work or not.

Ways to avoid these negative consequences that were mentioned by paramedics included
opportunities for paramedics and physicians to get to know one another personally and
professionally, open and non-judgmental communication practices, and increased
understanding regarding joint responsibilities and priorities between paramedics in the field
and physicians and nurses in the hospital.

Paramedics’ performance outcomes and perceptions of the technology are only part of the
story. Design requirements for a complex technology, such as 3D telepresence technology, that
has the potential to affect many professionals and individuals, and which requires substantial
changes in our technology and social infrastructures, must take into account as many
stakeholders as possible. Meeting the needs of multiple stakeholders will increase the
likelihood that the technology will be successfully adopted and used. For example, while
technology transparency and ease of use might appear important from a paramedic’s
perspective, a hospital administrator might not be willing to invest in a system that does not
meet federal and state regulations for protecting patient privacy. An insurance company may
not be willing to reimburse for emergency healthcare services utilizing a new technology if the
new costs do not provide quantifiable benefits with respect to patient care. To identify these
types of requirements, we are conducting interviews with multiple stakeholders in the U.S.
healthcare system, including emergency room (ER) physicians and nurses, IT support staff, ER
department administrators, and Medicaid administrators. Our goal is to identify multiple
stakeholders’ needs and constraints from a broad contextual perspective, in order to provide a
more comprehensive set of design requirements than is possible from the data reported in this

paper.
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Today, paramedics at the scene of an accident collaborate with physicians via radio or cell
phone which offer no visual support. Paramedics are required to verbally ‘paint the picture’ of
the patient and accident scene to the advising physician in these complex and stressful
situations, where the paramedic’s need for information is time-critical and where incorrect
decisions based on this information may have fatal consequences.

Our experimental evaluation illustrates that providing physicians with rich, dynamic visual
information of the emergency situation may lead to a more effective collaboration between the
physician and paramedic and ultimately to better patient care. Our results illustrate that state-
of-the-art 2D videoconferencing does not appear sufficiently flexible to allow a physician to
establish and maintain situational awareness of the dynamic and stressful remote emergency
healthcare situation effectively. The physician must still ask the paramedic to provide detailed
information regarding the patient and the paramedic’s actions, that is, the paramedic must still
‘paint the detailed picture’ for the physician.

B. Identifying Barriers to the Adoption and Use of 3DMC
Results from the data analysis show that there are both social and technical challenges facing
the adoption and use of 3DMC. Challenges were reported by healthcare professionals,
healthcare service organizations, and state and federal government healthcare agencies. That
is, challenges were foreseen for all segments of the American healthcare system.

Today, the physical boundaries between physicians working in emergency rooms (ERs) and
paramedics working in the field and in ambulances mirror the boundaries found in work
practices and work cultures between physicians and paramedics. In interviews, paramedics
reported that they do not feel respected by physicians. Physicians seem not to listen to them
much when they bring a patient into the ER and report the patient’s history and status. They
may only call a physician when they are in the field and/or when their medical protocol
demands it; otherwise a physician may question their judgment in a derogatory manner. By
law, they must do everything that a physician requests, so there is no opportunity for
collaboration unless an individual physician chooses to collaborate. By bridging the physical
boundaries between paramedics in the field and physicians in the hospital in new ways, 3DMC
has the potential to both reduce and increase paramedics’ autonomy and responsibilities.
Physicians and the healthcare system could use 3DMC to tightly control paramedics’ medical
tasks and career by requiring paramedics to consult with a physician more frequently. Thus,
3DMC that enables paramedics’ work to be more visible both immediately and over time
(through digital recordings of 3DMC sessions) could be used to specify tasks paramedics must
perform in the field and/or to evaluate and censure their work in a way never before possible.
It’s unclear whether such control would benefit patient care over the long term, or whether
such control would lead to a reduction of paramedics’ skills and knowledge and consequently to
a reduction in the quality of healthcare services provided in the field. A person merely following
orders to complete a task may not perform as well as a rather more autonomous person who
has some knowledge and skills with respect to the task to be performed. On the other hand,
some paramedics believe that if 3DMC made their work in the field more visible, they and the
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paramedic profession in general would earn more respect and be given increased

responsibilities because physicians would gain a better understanding of paramedics’

knowledge and skills. As one paramedic explained:
| think it’s gonna’ benefit us as a profession to have a physician...available...via video.
Because they all [say]...we do a great job, but they don't always get what's it really like out
there in the field ... having one available to us would give him a better perspective on what
we do and it would definitely help our profession... And also ultimately help out the
patient...Having some kind of interaction with the physician, and | say physician but it could
be nurse, PA or someone that could give the authority to do something...[would] speed up
things...You know sometimes we do things in the back of the truck [or ambulance] because
the patient needs it right now...But if we had some kind of video conferencing going on, we
could possibly do some [additional] things ...[to] help in speeding up the process 2 or 3
hours later when they get into the ER... it would have an overall advantage of getting the
patient more stable and able to return home, or get better, in a shorter amount of time.

The challenge is whether the technology can enable paramedics to become “physician
extenders” in a meaningful way while still keeping their professional identity and authority.
Physicians reported that 3DMC could have a negative impact on their work as well. 3DMC could
increase a physician’s workload, and take physicians away from patients already at the ER.
Could physicians’ workloads be adjusted to give them sufficient time to collaborate with
paramedics in the field? Guidelines and regulations regarding the use of 3DMC that are
compatible with paramedics’ and physicians’ work practices and values are required to help
ensure that the technology does not have a negative impact on emergency healthcare services.
A 3DMC technical requirement identified by paramedics and physicians alike during interviews
is near-instantaneous set up and start times for the technology. In emergencies, the quicker
care is provided to patients, the quicker patients recover. This can reduce patient suffering,
lower costs and enable patients to return to work more quickly. Thus paramedics and
physicians do not want to spend time setting up and/or booting 3DMC equipment. Turning it on
by a single switch would be ideal. Fulfilling this requirement may mean that the equipment
could be mounted in ambulances. Situating the technology within an ambulance would also
greatly reduce or eliminate audio interference caused by noise from other vehicles, from
bystanders and from weather conditions in the field. Of course, when an ambulance is in
motion and the technology is in use, vibrations could cause visual problems for physicians.
Advanced shock-resistant mountings and image stabilization techniques may be needed.

A portable version of the technology would also be useful in situations when the patient cannot
be moved into an ambulance. Portable versions (cf. Fig. 1, left column, center) would need to
be protected from the weather (rain, snow, winds), be impact resistant (in case the system is
dropped), and perhaps be battery-operated. Some study participants suggested that having
different levels of visual resolution, clarity and color accuracy available for different situations
could be feasible. For example, when a portable unit or a unit in a poorly-networked
geographical region is being used, lower levels of resolution and lower transmission speeds may
be acceptable. When no other options are available, physicians and paramedics could still
benefit from 3DMC under these circumstances.
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For organizations, 3DMC raises issues concerning legal responsibility and liability. If patient care
becomes a collaboration between a paramedic and a physician, who is legally responsible for
patient outcomes? Would the physician who has more training and skills be held responsible
even though the physician could not physically touch and treat the patient? Or would the
paramedic following (or misunderstanding or ignoring) the physician’s advice be held
responsible? Could 3DMC sessions legally occur across state borders, or would they be limited
by state boundaries? This is an issue facing many new medical technologies that span distances,
such as remote surgery. Furthermore, would the 3DMC session become part of a patient’s
record? Each session could be recorded and archived for future access. In certain situations,
patient care could be improved if an attending physician could see the patient’s earlier
condition and observe the treatment performed in the field (or ambulance). However, would
patients and lawyers use the recorded sessions as a weapon to sue paramedics and physicians,
increasing the number and complexity of malpractice lawsuits? On the other hand, could
physicians and paramedics use recorded sessions to more successfully defend their decisions
and actions? Integrity of, and long term access to, recorded sessions may emerge as future
challenges.

Another challenge for organizations concerns the cost of purchasing and operating 3DMC
technology. Emergency medical services (EMS) providers typically have smaller operating
budgets than medical centers, yet they would need to buy camera and transmission equipment
for each EMS vehicle or ambulance. In contrast, a larger medical center may only have to buy
equipment to support one or two viewing stations or viewing devices. As mentioned above,
future viewing devices may even be small handheld devices, with relatively low costs.
Telecommunications network costs also are a concern. Who will pay for development,
implementation and operational costs for the advanced telecommunications networks needed
to support 3DMC? As discussed above, the network will need new capabilities to be able to
transmit the visual and audio information. It should also be robust, to ensure 24/7 availability,
and secure, to protect patient privacy. Such networks may evolve in large populated areas
because other business, research and/or government needs will justify their costs, as has
happened historically. But 3DMC may make most sense medically if coverage can be provided
to rural areas, from where transport time to large medical centers with specialized expertise is
long. Paramedics reported that today, in parts of North Carolina, they have neither radio nor
cell phone coverage. This issue is not one that can be easily resolved by individual EMS
providers or by large medical centers alone. Can local, state and federal government agencies,
businesses and research work together to decrease the digital divide that exists today, and
enable new technologies and services such as 3DMC to reach all in need?

In the U.S., billing for 3DMC services would present a unique challenge. Insurance companies,
as well as state and federal healthcare agencies, such as Medicare, that are billed for patients’
medical expenses, need rigorous evidence that 3DMC improves patient healthcare and is cost-
effective, i.e., does not increase medical costs, before they will agree to pay for 3DMC services.
Study participants reported that expensive clinical patient trials running for long periods of time
would be required. Funding such trials will be challenging. Infrastructure changes that are not
typically part of clinical drug trials may be required to this end. That is, a clinical trial could



Journal of Biomedical Discovery and Collaboration (2009) 4

require changes to local telecommunication networks, to hospital and EMS information
technology infrastructure, to paramedic and physician training, to emergency treatment
protocols, and to procedures for obtaining patient consent in emergency situations.
But it is not all bad news. In addition to the uses and benefits for 3DMC that we, as researchers,
initially envisioned, study participants identified further uses and benefits. As mentioned above,
3DMC could be helpful in assisting healthcare services in developing countries. It could also be
used to enhance collaboration between physicians at large and smaller medical centers. As a
physician explained:
| take between 1 and 10 calls in an 8-hour period...from other physicians trying to transfer
patients. And to be able to utilize [3DMC] technology to...see that patient, and talk about
..what we can offer that patient would be useful...| see this as a bigger application...than
pre-hospital [care].

When physicians have an increased understanding of patients’ needs, they can better
determine whether a patient could be treated in their local community, without transfer to a
large medical center. This could save costs. It could allow patients to receive better emotional
healing support. When patients are kept in their community, they are able to have more
frequent contact with their loved ones. When a patient must be transferred to a large medical
center and physicians have an in-depth understanding of the patient’s needs, resources can
immediately be scheduled for that patient. This could eliminate delays in treatment, decrease
the length of hospital stays and help make better use of hospital resources in general.

An additional, indirect benefit from collaboration via 3DMC could be educational. Study
participants reported that both physicians at large and small medical centers and paramedics
could learn from each other during 3DMC sessions. Paramedics and physicians at smaller
medical centers could learn new skills from physicians at larger medical centers who have
better access to new medical techniques and perhaps more experience. Physicians at large
medical centers could learn more about emergency care situations in the field, increasing their
ability to diagnose and treat patients when they arrive at the ER. Recorded sessions, with
anonymity of participants preserved, could also be used as rich case studies in medical training
courses.

Several participants also suggested that 3DMC could be used as a marketing tool and status
symbol to attract patients and their families. For example, retirees who typically use more
healthcare services than other groups may be persuaded to move to a rural area that uses
3DMC. Because large medical centers are typically located in populated areas with a high cost
of living, a rural area with a lower cost of living and 3DMC that enables high quality medical
care could be attractive to retirees. In urban areas where several hospital and EMS providers
compete for patients, 3DMC may help differentiate between healthcare providers. Patients
with higher incomes and good insurance coverage may choose to use EMS providers and
hospitals that provide the high quality emergency healthcare that 3DMC (ideally) enables.

In summary, there are many benefits and challenges with respect to 3DMC. Government
mandates and/or strong financial incentives provided by the government and other interest
groups could well outweigh the challenges identified by the study participants. In countries that
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have socialized medical systems and government-owned or -regulated telecommunications
companies, these types of challenges may be easier to overcome.

Conclusions

In the 2001 PITAC report to the President, Transforming Health Care Through Information
Technology, recommendation 5 states that the Department of Health and Human Services
should establish an “aggressive research program in computer science” that addresses “long-
term needs, rather than the application of existing information technology to biomedical
problems” [38, p. 13]. 3DMC is an aggressive research program addressing long-term needs for
more effective medical collaboration, improved healthcare, and (ideally) reduced medical care
costs. It is interdisciplinary, uniquely bringing together researchers in computer science,
information science and medicine. This paper synthesizes the progress made towards
developing and evaluating 3DMC.

We have made progress developing computer vision methods for reconstruction of a 3D
model/view of a dynamic scene, remote collaboration displays, and network resource
management algorithms to support transmission of 3D views. The results were realized in a
prototype system, demonstrating that with a future, larger-scale technological effort, the
technology could be brought within our reach and embedded within our medical infrastructure.

We have made progress in understanding the potential of 3DMC. We did not find statistically
significant evidence that medical task performance improved with 3DMC when compared to 2D
videoconferencing, yet there is statistically significant evidence that paramedics preferred
3DMC over 2D videoconferencing. There is also evidence that self-efficacy is significantly lower
after a paramedic collaborated with a physician using 2D videoconferencing. These are
important results as perceptions of new technology and self-efficacy are strong indicators of
adoption of technology and future task performance.

We have also identified additional benefits to and challenges facing 3DMC. Typically such
challenges are discovered after considerable resources are spent developing and implementing
new technology, and people’s lives are negatively impacted. Identifying challenges earlier
enables the technology design to address the challenges at a lower cost; changing technology
after it has been designed and developed increases its cost. It also reduces the likelihood of
harmful unintended consequences.

The Office for the Advancement of Telehealth [38] points out how the Telecommunications Act
of 1996 has and continues to improve access and reduce costs for urban and rural healthcare
providers. Our project builds on this tradition, discovering new ways technology can be used to
provide emergency healthcare outside hospital settings to trauma victims. Trauma is a
significant health problem, frequently referred to as the ‘hidden epidemic of modern society’
because it is responsible for more productive years lost than heart disease, cancer and stroke
combined [39, 40]. 3DMC can potentially bring needed healthcare expertise to trauma victims
before they are transported to hospitals. The sooner a victim receives appropriate expert
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medical care, the shorter their recovery time and lower their medical care costs. Thus 3DMC
could have a significant impact on patient healthcare in the future. Additional details can be
found in discipline-specific papers [see 16, 17, 26, 27, 35, 36].
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