Population Segmentation Using a Novel Socio-Demographic Dataset

How to Cite

Scheufele, E., Hodor, B., Popa, G., Wang, S., & Kassler, W. (2022). Population Segmentation Using a Novel Socio-Demographic Dataset . Online Journal of Public Health Informatics, 14(1). https://doi.org/10.5210/ojphi.v14i1.11651


Appending market segmentation data to a national healthcare knowledge, attitude and behavior survey and medical claims by geocode can provide valuable insight for providers, payers and public health entities to better understand populations at a hyperlocal level and develop cohort-specific strategies for health improvement. A prolonged use case investigates population factors, including social determinants of health, in depression and develops cohort-level management strategies, utilizing market segmentation and survey data. Survey response scores for each segment were normalized against the average national score and appended to claims data to identify at-risk segment whose scores were compared with three socio-demographically comparable but not at-risk segments via Nonparametric Mann-Whitney U test to identify specific risk factors for intervention. The marketing segment, New Melting Point (NMP), was identified as at-risk. The median scores of three comparable segments differed from NMP in “Inability to Pay For Basic Needs” (121% vs 123%), “Lack of Transportation” (112% vs 153%), “Utilities Threatened” (103% vs 239%), “Delay Visiting MD” (67% vs 181%), “Delay/Not Fill Prescription” (117% vs 182%), “Depressed: All/Most Time” (127% vs 150%), and “Internet: Virtual Visit” (55% vs 130%) (all with p<0.001). The appended dataset illustrates NMP as having many stressors (e.g., difficult social situations, delaying seeking medical care). Strategies to improve depression management in NMP could employ virtual visits, or pharmacy incentives. Insights gleaned from appending market segmentation and healthcare utilization survey data can fill in knowledge gaps from claims-based data and provide practical and actionable insights for use by providers, payers and public health entities.

Authors own copyright of their articles appearing in the Online Journal of Public Health Informatics. Readers may copy articles without permission of the copyright owner(s), as long as the author and OJPHI are acknowledged in the copy and the copy is used for educational, not-for-profit purposes. Share-alike: when posting copies or adaptations of the work, release the work under the same license as the original. For any other use of articles, please contact the copyright owner. The journal/publisher is not responsible for subsequent uses of the work, including uses infringing the above license. It is the author's responsibility to bring an infringement action if so desired by the author.